首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   39篇
  国内免费   124篇
航空   103篇
航天技术   305篇
综合类   20篇
航天   249篇
  2024年   1篇
  2023年   16篇
  2022年   14篇
  2021年   31篇
  2020年   20篇
  2019年   22篇
  2018年   32篇
  2017年   12篇
  2016年   19篇
  2015年   20篇
  2014年   61篇
  2013年   33篇
  2012年   33篇
  2011年   31篇
  2010年   29篇
  2009年   39篇
  2008年   40篇
  2007年   21篇
  2006年   22篇
  2005年   28篇
  2004年   15篇
  2003年   13篇
  2002年   13篇
  2001年   17篇
  2000年   36篇
  1999年   18篇
  1998年   9篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1990年   5篇
  1989年   1篇
排序方式: 共有677条查询结果,搜索用时 225 毫秒
1.
Future space ventures will likely require exploitation of near-Earth asteroid resources. Moreover, it can be envisaged that asteroids may host habitats in their interiors. In fact, a cavern inside an asteroid would be a natural radiation shield against cosmic radiation and may also serve as a confined environment for storage of mined material such as water ice or other processed volatiles such as propellants. To this end, this paper proposes to leverage the asteroid rotational self-energy to remove material from the asteroid interiors and create a spherical cavern, by means of the orbital siphon concept. The siphon is a chain of tether-connected payload masses (the asteroid material), which exploits the rotation of the asteroid for the delivery of mass from the asteroid to escape. Under certain conditions the siphon can be initiated to ensure self-sustained flow of mass from the asteroid to escape. A net orbital siphon effect is generated by connecting new payloads at the bottom of the chain while releasing the upper payloads. Key parameters are discussed, such as the required siphon dimension and the maximum size of the internal cavity that can be excavated, as a function of the asteroid rotational period. Moreover, assuming elastic material behaviour, a closed-form expression for the stress tensor is found and a failure criterion is used to identify regions in the asteroid interiors subjected to the larger stresses. It is shown that the conditions for failure are relaxed as the radius of the internal void increases.  相似文献   
2.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   
3.
The Earth orbital environment is drastically changing due to an intensification of the space activities. In particular, several projects of large constellations, proposed for the next years for communications purpose like global internet access, Internet of Things, or for Earth observations, will lead to the deployment of several thousands of new satellites at an unprecedented rate. It is a crucial challenge for space traffic management, which will deal with a great number of satellite conjunctions, potentially causing a collision with damaging consequences for the constellation itself and the space environment sustainability.In this paper, we investigate the close approach frequency and the cumulative collision probability for each referenced constellation. For this purpose, we compute the orbital evolution of satellites in different constellations during the lifecycle, from the deployment to the decommissioning, and we apply the CUBE algorithm and the Foster method to assess the collision probability with the background space debris population assuming a constant uncertainty in position. We show the variation of risk defined by the close approach frequency and the cumulative collision probability as a function of the proposed configuration. In particular, satellites of the Iridium and Kuiper constellation, but also satellite of the Telesat constellation on polar orbits are the most exposed at a collision. Moreover, the decommissioning phase contribute for a major part to the final cumulative collision probability.  相似文献   
4.
retro-GEO是指逆行(retrograde)地球静止轨道(geostationary Earth orbit, GEO),该轨道与GEO轨道高度相同或相近,但倾角为180°,安装在retro-GEO卫星上的巡视器可每12h对GEO带空间资产附近碎片环境安全预警。直接西向发射retro-GEO卫星存在地面测控和发射能耗较大的困难。基于平面四体模型,为降低设计变量敏感性,以近月点参数为设计变量,建立了部署retro-GEO巡视器的月球借力飞行轨道设计模型,利用轨道动力学模型延拓策略,得到该类轨道绕月后返回地球飞行时长只能约为114.79h,该结论可用于求解该类轨道高精度轨道动力学模型解。  相似文献   
5.
We investigate the orbital stability close to the unique L4-point Jupiter binary Trojan asteroid 624 Hektor. The gravitational potential of 624 Hektor is calculated using the polyhedron model with observational data of 2038 faces and 1021 vertexes. Previous studies have presented three different density values for 624 Hektor. The equilibrium points in the gravitational potential of 624 Hektor with different density values have been studied in detail. There are five equilibrium points in the gravitational potential of 624 Hektor no matter the density value. The positions, Jacobian, eigenvalues, topological cases, stability, as well as the Hessian matrix of the equilibrium points are investigated. For the three different density values the number, topological cases, and the stability of the equilibrium points with different density values are the same. However, the positions of the equilibrium points vary with the density value of the asteroid 624 Hektor. The outer equilibrium points move away from the asteroid’s mass center when the density increases, and the inner equilibrium point moves close to the asteroid’s mass center when the density increases. There exist unstable periodic orbits near the surface of 624 Hektor. We calculated an orbit near the primary’s equatorial plane of this binary Trojan asteroid; the results indicate that the orbit remains stable after 28.8375?d.  相似文献   
6.
7.
文章分析了现有的空间碎片清除方式,并以800~1200 km低地球轨道高度上1~10 cm量级的空间碎片为清除目标,提出了天基轻气炮清除碎片的新方法。首先分析了轻气炮有效载荷在典型参数下的弹丸加速能力;之后根据将碎片降轨使其坠入大气层烧毁的设想,提出天基轻气炮共面清除碎片的方式,并选择轨道高度800 km的圆轨道作为碎片运行轨道进行可行性分析。计算表明,对半径10 cm、厚度1 cm的铝合金圆板碎片(质量211.95 g),使用初速1 km/s、重10 g的黏性弹丸可按任务方案达到清除效果。此外,计算出该参数弹丸对轨道高度800~1200 km的圆轨道上可清除的最大碎片质量为500~825 g,证明轻气炮弹丸对1~10 cm的碎片具有较强的清除能力。最后,分析了以轻气炮为有效载荷的航天器在完成清除碎片任务时的关键技术。  相似文献   
8.
The space debris environment is one of the major threats against payloads. Space debris orbital distribution is of great importance for space debris environment modeling. Due to perturbation factors, the Right Ascension of Ascending Node (RAAN) of space objects changes consistently, causing regular rotation of the orbit plane around Earth’s axis. Based on the investigation of the RAAN perturbation rate of concerned objects, this paper proposes a RAAN discretization method in order to present the space debris longitude-dependent distribution. Combined with two line element (TLE) data provided by the US Space Surveillance Network, the estimated value from RAAN discretization method is compared with the real case. The results suggest that using only the initial orbital data at the beginning of the time interval of interest, the RAAN discretization method is able to provide reliable longitude distribution of concerned targets in the next following period. Furthermore, spacecraft cumulative flux against space debris is calculated in this paper. The results suggest that the relevance between spacecraft RAAN setup and flux output is much smaller for LEO targets than MEO targets, which corresponds with the theory analysis. Since the nonspherical perturbation is the major factor for RAAN variation, the RAAN perturbation rate has little connection with the size of orbital objects. In other words, the RAAN discretization method introduced in this paper also applies to space debris of different size range, proposing a possible suggestion for the improvement of space debris environment engineering models.  相似文献   
9.
杨育伟  蔡洪 《宇航学报》2019,40(8):897-907
将电动力绳系(EDT)的主星质量、子星质量、绳系质量以及绳系中的电流视为系统参数,研究这些参数对系统的摆动动力学和轨道动力学的影响。哑铃模型下的电动力绳系摆动动力学方程存在不稳定的周期解,通过Floquet理论来衡量周期解的不稳定程度,从而研究各系统参数对摆动动力学的影响。建立了用春分点轨道元素的形式描述的电动力绳系轨道动力学方程,并以降轨时间来衡量电动力绳系的降轨效率,从而研究系统参数对轨道动力学的影响。运用算例对周期解迁移矩阵的特征值、降轨时间随各系统参数的变化关系进行了仿真,分别得出了各系统参数对系统摆动动力学和轨道动力学的影响。综合本文的仿真结果,并考虑实际发射及空间运行中的其它因素,对电动力绳系的设计和降轨策略提出了建议。  相似文献   
10.
The thrust vector control (TVC) scheme is a powerful method in spacecraft attitude control. Since the control of a small spacecraft is being studied here, a solid rocket motor (SRM) should be used instead of a liquid propellant motor. Among the TVC methods, gimbaled-TVC as an efficient method is employed in this paper. The spacecraft structure is composed of a body and a gimbaled-SRM where common attitude control systems such as reaction control system (RCS) and spin-stabilization are not presented. A nonlinear two-body model is considered for the characterization of the gimbaled-thruster spacecraft where, the only control input is provided by a gimbal actuator. The attitude of the spacecraft is affected by a large exogenous disturbance torque which is generated by a thrust vector misalignment from the center of mass (C.M). A linear control law is designed to stabilize the spacecraft attitude while rejecting the mentioned disturbance torque. A semi-analytical formulation of the region of attraction (RoA) is developed to ensure the local stability and fast convergence of the nonlinear closed-loop system. Simulation results of the 3D maneuvers are included to show the applicability of this method for use in a small spacecraft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号